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1. Introduction

The half-BPS sector of SU(N) Yang-Mills theory with 16 supercharges contains a com-

plete commuting set of N conserved charges Mk, and an eigenstate of these Mk can be

identified from the eigenvalues. The gravitational duals of these states in AdS5 have also

been identified [1], and it has been argued that typical half-BPS states behave universally

like an extremal black hole in response to almost all probes [2]. This implies that infor-

mation about the underlying microstate is lost. Here we show how this tension between

integrability and information loss is resolved. We demonstrate that angular moments of

the gravitational solution that can be read off from the asymptotic metric directly measure

the higher conserved charges of the underlying quantum microstate. The low moments

have magnitudes large enough for semiclassical observation, but measuring the differences

in these moments between typical states requires Planck scale precision. The high mo-

ments vary strongly between typical states, but their magnitudes are so small that Planck

scale precision is again required to measure them. Thus, the coarse-grained semiclassi-

cal gravitational description of the underlying exact quantum microstate necessarily loses

information.
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2. Half-BPS states

2.1 Description in gauge theory

SU(N) Yang-Mills theory on S3 × R with 16 supercharges has a spectrum of half-BPS

states. The highest weight representatives in each BPS multiplet are created by operators

that are gauge invariant polynomials in the zero-modes of a single adjoint scalar field. The

Hamiltonian of the gauge theory restricted to these states reduces to that of a Hermitian

matrix harmonic oscillator [3, 4]. This is solved by going to the eigenvalue basis, and

redefining fields to arrive at a theory of N free fermions in a harmonic potential. A basis

of highest weight half-BPS states is completely specified by a set of increasing integers

F = {f1, f2, . . . , fN} that provide the excitation numbers of each individual fermion

Ei = ~
(

fi + 1
2

)

, i = 1, . . . , N . Equivalently, we can reproduce the state by giving a set of

non-decreasing integers {ri}, which measure the excitation of any given fermion above the

vacuum

ri =
Ei

~
− i +

1

2
. (2.1)

This data can be encoded as a Young diagram in which the i-th row has length ri.

The energies {f1, . . . fN} completely specify these basis states. The states can also be

specified in terms of the moments

Mk =

N
∑

i=1

fk
i = Tr(Hk

N/~
k) ; k = 0, . . . N , (2.2)

where HN is the Hamiltonian acting on the N fermion Hilbert space with the zero point

energy removed. Manifestly, the Mk are conserved charges of the system of fermions

in a harmonic potential [5]. The basis of states with fixed fermion excitation energies

that was described above consists of eigenstates of the moment operators. The individual

excitation energies F in these eigenstates can always be reconstructed from the set of

moments M = {M0,M1, . . . MN}. To see this, construct the characteristic polynomial

P = det(x IN − HN/~) =

N
∏

i=1

(x − fi) . (2.3)

This product can be expanded in symmetric products of the fi as

P =
N

∑

p=0

(−1)pπpx
N−p ; πk =

∑

i1<i2<···ik

fi1fi2 · · · fik . (2.4)

The πi are given recursively in terms of the moments Mk by the Newton-Girard formula

mπm +

m
∑

k=1

(−1)kMkπm−k = 0. (2.5)

Thus, given a measurement of the moments Mk for k = 1, . . . N one can compute the

symmetric products πi and from these determine the fermion excitations F that completely

determine the basis BPS states as the roots of the characteristic polynomial (2.3).
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Very heavy half-BPS states (M1 = Tr(HN/~) ∼ N2) have a dual description in terms

of large-scale classical solutions of the maximally supersymmetric gravity in AdS5. In [2]

it was shown that almost all such eigenstates of the moment operators {Mk} lie very close

to a certain “typical state” with a characteristic distribution of fermion energies. In an

ensemble of states in which the maximum excitation energy of any given fermion is bounded

(so that ri ≤ Nc ∀ i) the expected excitation energies of the fermions in the typical state

are given by:

〈ri〉 =

i−1
∑

j=0

e−β(N−j)−λ

1 − e−β(N−j)−λ
(2.6)

where β is an “inverse temperature” used to fix the total energy and λ is a “chemical

potential” fixing the maximum excitation of individual fermions. The semiclassical limit

for this system is obtained by sending ~ → 0 with N~ kept constant to fix the Fermi

level. In this limit, almost all half BPS states have fermion energy distributions that are

small fluctuations around (2.6). In this limit we can treat the fermion number i and the

excitation energies ri as continuous variables and relabel

i → x and ri → y(x) . (2.7)

Any eigenstate of the moment operators that has a semiclassical limit can then be described

in terms of such a function y(x). In particular, the typical state (2.6) is summarized as a

limit curve

C(N,NC) e−β(N−x) + D(N,Nc) e−β(y−Nc) = 1 , (2.8)

where C are D are determined by fixing the total energy and maximum excitation. The

maximum entropy results when β → 0 in which case this limit curve simply reduces to

y =
Nc

N
x (2.9)

Thus, in the large N,Nc limit, almost all half-BPS states with bounded fermion excitations

lie very close to the line (2.9). Said otherwise, the uniform distribution over all sets of

integers r1 ≤ r2 ≤ · · · rN ≤ Nc is strongly localized on partitions that lie close to the

curve (2.9). We will have use of this fact later.

These half-BPS states can also be described in terms of a distribution of fermions

on the single particle harmonic oscillator phase space (p, q) [2]. Wigner [6] described

a distribution function that encodes the expectation value of Weyl (symmetric) ordered

quantum observables,
∫

dp dq W (p, q) f(p, q) = 〈OW (f)〉 , (2.10)

where OW is the Weyl-ordered operator corresponding to the classical function f . The

Wigner distribution corresponding to a state F was computed in [2] to be

W (r) =
1

π~
e−

r
2

~

∑

f∈F

(−1)fLf

(

2r2

~

)

, (2.11)
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where Lf (x) is a Laguerre polynomial and r2 = q2 + p2. Since we are considering an

eigenstate of the Hamiltonian, the corresponding phase space distribution is rotationally

invariant. If a state is an eigenstate of the Mk, all of these moments can be extracted from

the Wigner distribution. Two other interesting distributions on phase space were identified

in [2]. The Husimi distribution

Hu(r) =
1

2π~
e−

r
2

~

∑

f∈F

1

f !

(

r2

~

)f

(2.12)

arises by smoothing the Wigner distribution with a Gaussian kernel at the ~ scale, and

computes the expectation values of reverse normal ordered operators [7]. Finally, consider a

state that is described in the semiclassical ~ → 0 limit by a limit curve y(x) as in (2.7), (2.8).

It was shown in [2] that a semiclassical observer of such a state, having access only to areas

larger than ~ in phase space, interacts with the effective “grayscale distribution”

g(r) =
1

1 + dy/dx
. (2.13)

2.2 Description in gravity

By analyzing symmetries, the half-BPS states described above should be dual in the semi-

classical limit to solutions of IIB supergravity with SO(4)× SO(4)×U(1) symmetry with

5-form flux and constant dilaton. These solutions have been found in [1]:

ds2 = −h−2 (dt + Vidxi)2 + h2 (dy2 + dxidxi) + R2 dΩ2
3 + R̃2 dΩ̃2

3, (2.14)

where the coefficients are given in terms of a function u(x1, x2, y) as

R2 = y

√

1 − u

u
, R̃2 = y

√

u

1 − u
, h−2 =

y
√

u(1 − u)
. (2.15)

The one form V is

Vi(x1, x2, y) = −εij

π

∫

R2

u(x′
1, x

′
2, 0) (xj − x′

j) dx′
1dx′

2

[(~x − ~x′)2 + y2]2
. (2.16)

Thus, the function u completely specifies the solution. This function in turn satisfies a

harmonic equation in y and as such is fully determined by its boundary condition in the

y = 0 plane

u(r, ϕ, y) =
y2

π

∫

R

u(r′, ϕ′, 0) d2~r′

[(~r − ~r′)2 + y2]2
, (2.17)

where we have used polar coordinates for the (x1, x2) plane. The full solution also contains

a 5-form field strength that we are omitting here.

A dictionary between these solutions and the half-BPS field theory states has been

established in [1, 2]. The (x1, x2) plane at y = 0 is identified with the single particle

oscillator phase space in the dual gauge theory:

(x1, x2) ↔ (p, q) . (2.18)
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The Planck scale lp is related to ~ in the field theory:

l4p ↔ ~ . (2.19)

Finally, the boundary condition function u(x1, x2, 0) is identified with the single particle

phase space distribution in the fermionic description of half-BPS states in the field theory.

The eigenstates of Mk that we are interested in are all rotationally invariant in phase space,

so, taking

r2 = (x1)2 + (x2)2 ↔ p2 + q2 (2.20)

and writing u(x1, x2, 0) as u(r) we could identify

u(r) ↔ 2π~W (r), 2π~Hu(r), 2πg(r) (2.21)

We will see in section 3.2 that a classical observer will not be able to detect the differences

between these choices.

3. Integrability and the gravitational solution

Above we saw that a half BPS state in field theory with a fixed set of fermion excitation

energies F can be completely identified by a measurement of a set of gauge-invariant

observables, the moments M. However, the gravitational description of half BPS states

involves the effective single particle phase space distribution (2.21) and as such appears to

lose information about the N fermion excitation energies that are necessary to characterize

the state completely. Here we show that for eigenstates of the moment operators Mk,

no information is lost. All the moments of the fermion energies are stored in angular

moments of the gravitational solution that can be measured from infinity. In this way the

gravitational solution preserves the integrable character of half BPS states.

3.1 Multipole expansion and integrable charges

At infinity, a natural tool for studying the state of a spacetime is the analysis of the

multipole moments of all fields. Such an expansion is usually done at the level of observ-

able quantities, but since all half BPS geometries are characterized by the scalar function

u(x1, x2, y), it suffices to study the asymptotic multipoles of u. We choose the boundary

condition for u on the y = 0 plane as corresponding to the Wigner distribution on the

fermion phase space of the dual field theory:

u(r) = 2π~W (r) (3.1)

following (2.21). Then, recalling the exact expression (2.11) for the Wigner distribution

associated to a half-BPS eigenstate of the Mk, we expand the denominator of (2.17) as a

power series in r′2−2~r·~r′

r2+y2 . The integrals can be done explicitly using

∫ ∞

0

∫ 2π

0
dr dϕ e−r2

Lf (2r2) rl+1 (n1 cos ϕ + n2 sinϕ)p (3.2)

– 5 –
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=
πf !

2p

(

p
p
2

) f
∑

k=0

(−1)k2k(k + l
2 )!

(f − k)!(k!)2
δp,even ,

where |~n|2 = 1. Spacelike infinity is reached in the solutions (2.14) by either going to large

radial distances in the (x1, x2) plane at y = 0 or by going to large y. Thus it is natural, at

infinity, to introduce the new radial coordinate ρ:

r = ρ sin θ, y = ρ cos θ, with θ ∈ [0,
π

2
] . (3.3)

In this coordinate system the boundary of the spacetime lies at ρ → ∞. The new angular

variable θ, which measures the angle between the two radial variables {r, y} becomes the

azimuthal angle in the 5-sphere of the asymptotic AdS5 × S5 geometry.

After some manipulation we find that in this coordinate system u has the asymptotic

multipole expansion

u(ρ, θ) = 2 cos2 θ
∞

∑

l=0

~
l+1

∑

f∈F Al(f)

ρ2l+2
(−1)l(l + 1) 2F1(−l, l + 2, 1; sin2 θ), (3.4)

where 2F1 is the hypergeometric function and Al(f) is a polynomial of order l in f :

An(f) ≡
f

∑

s=0

(−1)f−s2sf !

(f − s)!s!
(s + 1)n . (3.5)

The Pochhammer symbol is defined by (α)n = α(α + 1) · · · (α + n − 1) = (α+n−1)!
(α−1)! . Here

~ ↔ l4p as in (2.19). All of these sums can be computed by introducing the generating

function

B(n, f, a) =

f
∑

s=0

(

f

s

)

(−1)f−sas+n = an(a − 1)f , (3.6)

from which we can derive

An(f) =

(

d

da

)n

B(n, f, a)|a→2. (3.7)

The first few sums are

A0(f) = 1 ,

A1(f) = 2f + 1 ,

A2(f) = (2f + 1)2 + 1 ,

A3(f) = (2f + 1)3 + 5(2f + 1) ,

A4(f) = (2f + 1)4 + 14(2f + 1)2 + 9 ,

A5(f) = (2f + 1)5 + 30(2f + 1)3 + 89(2f + 1) ,

These are even and odd in (2f + 1) as can be seen from the recurrence relation

An+1(f) = (2f + 1)An(f) + n2An−1(f) , (3.8)
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that allows us to compute any such sum. Another convenient form is

An(f) =

(

d

da

)n

B(n, f, a)|a→2 = n!
n

∑

k=0

(

n

k

)(

f

k

)

2k . (3.9)

Since the whole ten dimensional geometry is determined by the function u, (3.4) per-

mits computation of all the angular moments of the metric. This is given in appendix A.

For example, the asymptotic multipole expansion of the V1 component of the Vi shift vector

in (2.14) is

V1(r, ϕ, θ) = −2 sin ϕ sin θ

(

~N

ρ3
+

∞
∑

l=1

~
l+1

∑

f∈F Al(f)

ρ2l+3
(−1)l(l + 1) ·

·
[

2F1(−l, l + 2, 1; sin2 θ) + l 2F1(1 − l, l + 2, 2; sin2 θ)
]

)

. (3.10)

The angular moments of curvature invariants can be computed from this data.

Measuring the charges: In this multipole expansion, the data about the underlying

state {F} enters the lth moment in sums of the form

∑

f∈F

Al(f) =

l
∑

k=0

ck Mk (3.11)

where the Mk are the moments defined in (2.2) and ck is the coefficient of fk in the

polynomial expansion of Al(f). Thus a measurement of the first N multipole moments of

the metric functions can be inverted to give the set of charges M of the underlying state,

from which the complete wavefunction can be reconstructed.

3.2 The semiclassical limit

The semiclassical limit for half BPS states is

~ → 0 ; ~N = α = fixed . (3.12)

Since the moments Ml scale with N as

Ml = mlN
l+1 (3.13)

we see that as ~ → 0

~
l+1Ml → ml α

l+1 . (3.14)

Thus, in the semiclassical limit the multipole expansion reduces to

u(ρ, θ) = 2 cos2 θ

∞
∑

l=0

2lαl+1ml

ρ2l+2
(−1)l(l + 1) 2F1(−l, l + 2, 1; sin2 θ). (3.15)

The lth multipole is dominated by Ml with subleading corrections from the lower moments.

Thus, in the semiclassical limit, the amplitude of each multipole moment is directly related

to a higher order conserved charge of the underlying integrable system.
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The computations above were carried out by identifying the boundary condition for

the u function in the y = 0 plane with the Wigner distribution in the harmonic oscillator

phase space (3.1). However, there are other distributions on phase space which differ in

the ordering prescription that they assume for quantum mechanical operators. Any of

these distributions is a candidate for identification with the u function and it was proposed

in [2] and each choice should be appropriate for describing the effective metric sensed by

different quantum gravity observables. However, since ordering prescriptions only lead to

differences in observables at higher orders in ~, the leading semiclassical result (3.15) should

be universal. We demonstrate this below for the Husimi distribution (2.12) and for the

grayscale distribution (2.13).

Husimi distribution: We can carry out the multipole expansion of section 3.1 after

identifying the boundary condition for the u function on the y = 0 plane as

u(r) = 2π~ Hu(r) (3.16)

where the Husimi distribution Hu(r) for a given get of fermion excitation energies F is

given in (2.12). We obtain

uH(ρ, θ) = 2 cos2 θ
∞

∑

l=0

2l
~

l+1
∑

f∈F
(f+l)!

f !

ρ2l+2
(−1)l(l + 1) 2F1(−l, l + 2, 1; sin2 θ). (3.17)

Since (f+l)!
f ! = f l + (lower powers of f), the semiclassical limit gives

us.c.
H → 2 cos2 θ

∞
∑

l=0

2lαl+1ml

ρ2l+2
(−1)l(l + 1) 2F1(−l, l + 2, 1; sin2 θ). (3.18)

This agrees exactly with the semiclassical limit in (3.15). Thus the semiclassical asymptotic

observer will always measure the same multipole moments. However, the subleading terms

that are suppressed in powers of ~ (or, equivalently, lp, see (2.19)) differ between the

geometries based on the Wigner and Husimi distributions. Presumably, this implies that

while the classical spacetime does not depend on the operator ordering prescription, the

underlying “quantum foam” [2] looks different to different quantum mechanical observables.

Grayscale distribution: Finally we can identify the boundary condition for u with

the grayscale distribution (2.13) as

u(r) = 2π g(r) . (3.19)

In this case it is diffcult to analyze the multipole expansion in complete generality. Thus

we present the computation for a state whose semiclassical limit curve (see (2.7)) is

y(x) = (δ − 1)x ; x ∈ (0, N − 1) (3.20)

This limit curve corresponds to the extremal superstar spacetime (see [8, 2] for details).

The corresponding grayscale phase space distribution is (2.13)

u =
1

1 + y′
=

1

δ
, 0 ≤ r ≤ r0 , (3.21)
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where r0 =
√

2~δN to leading order in N . Because the curve (3.20) is entirely determined

by δ, the moments Mk are all expressible in terms of this parameter:

Mk =
N

∑

i=1

fk
i =

N−1
∑

i=0

(δi)k = δk
N−1
∑

i=0

ik ≈ δk Nk+1

k + 1
. (3.22)

Then we can once again compute the asymptotic expansion and find that in the semiclas-

sical limit

uG = 2cos2 θ
∞
∑

l=0

2lαl+1ml

ρ2l+2
(−1)l(l + 1) 2F1(−l, l + 2, 1; sin2 θ) , (3.23)

where ml = δl

l+1 This matches with the Wigner (3.15) and Husimi (3.18) geometries as

expected.

4. Semiclassical observers and information loss

Above we showed that the entire tower of conserved charges of half BPS states is stored,

in the gravitational description, in multipole moments of the spacetime. We will now show

that a semiclassical observer will not be able to access this information. First, we will

argue that such an observer, with access to length scales longer than the Planck length,

will only be able to measure the very low multipoles. Second, we will show that these low

multipoles are essentially universal for almost all states. Thus, semiclassical observers will

necessarily lose information even though it is present in the full theory.

4.1 High multipoles cannot be measured

Recall that the semiclassical limit for half BPS states is ~ → 0 with ~N = α fixed (3.12).

Translating this into gravity using l4p ↔ ~ this amounts to

~N ↔ l4pN ∼ gsl
4
sN ∼ L4 = α = fixed ; L ∼ ls(gsN)1/4 (4.1)

where ls is the string length, gs is the string coupling, and L is the length scale associated

to the asymptotic AdS5 × S5 spacetime using the standard AdS/CFT dictionary. Thus,

the semiclassical limit (3.12) that we have been using is the same as the standard limit in

the AdS/CFT correspondence, namely gs → 0, N → ∞ with L fixed.

One way of measuring the lth multipole in (3.4), (3.15) is to compute the (2l)th deriva-

tive of the metric functions or any suitable invariant constructed from them. Consider an

apparatus of finite size λ that makes such a measurement. In order to compute the kth

derivative of a quantity within a region of size λ, the apparatus will have to make measure-

ments at a scale λ/k. However, a semiclassical apparatus can only measure quantities over

distances larger than the Planck length. Thus, the kth derivative can only be measured if

λ

k
> lp = g1/4

s ls (4.2)

Setting the size of the apparatus to be a fixed multiple of the AdS scale

λ = γL , (4.3)
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this says that

k < γN1/4 (4.4)

for a derivative to be semiclassically measurable. In order to identify the underlying quan-

tum state we have shown that O(N) multipoles must be measured. Since N1/4/N → 0

as N → ∞ we see that the semiclassical observer has access to a negligible fraction of the

information needed to identify the quantum state.

In order to measure the first N multipoles without making Planckian measurements,

an observer would require an apparatus of size λ ∼ N3/4L. But in the semiclassical limit,

this size diverges. This is an interesting appearance of the connection in gravity between

the extreme UV and the extreme IR.

We might attempt to avoid the difficulty of probing high order derivatives in spacetime

by directly measuring the angular moments of (3.4), (3.15) along the θ direction. Consider

a location where this circle has a circumference λ. Then to measure the kth multipole, an

apparatus will have to measure the amplitude of a fluctuation along this circle which has

O(k) nodes. For a semiclassical apparatus, the spacing between nodes must be bigger than

Planck length in order to be measurable. This requires λ/k > lp just as in (4.2). Then by

reasoning identical to the above, only O(N1/4) multipoles will be measurable. One might

attempt to increase the number of measurable mutipoles by moving out to locations at

which the θ circle has a large circumference. However, as described below (3.3), θ is the

azimuthal coordinate in the S5 part of the asymptotic AdS5 × S5 in the geometry. As

such its size remains of O(L) even at infinity, and direct measurement of higher multipoles

remains impossible for the semiclassical observer.

4.2 Low multipoles are universal

The argument above has shown that almost all information concerning the detailed quan-

tum state is unmeasurable by a semiclassical observer. This leaves open the possibility that

the lowest N1/4 multipoles can be measured. Here we will argue that even these measure-

ments cannot be done with sufficient precision to distinguish between most microstates.

This is because almost all half BPS states of the kind that we are considering lie very

close to a “typical state” [2]. Thus, as described in section 2.1, almost all half BPS states

with a bound on individual fermion excitation energies lie close to the curve

f(x) =

(

1 +
Nc

N

)

x . (4.5)

(Recall the continuum notation (2.7).) Equivalently, this is the typical spectrum of fermion

energies in half-BPS states for which 0 ≤ f1 < f2 < · · · < fN ≤ Nc + N . We will show

that the standard deviation to mean ratio of the moments Mk (2.2) is small in such an

ensemble of states, implying that the differences between states cannot be observed by a

semiclassical observer.

First define the ensemble of integers

E1 = {fi | 0 ≤ f1 < f2 < f3 · · · < fN ≤ Nc + N} (4.6)
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The standard deviation to mean ratio of the moments (2.2)

σ(Mk)E1

〈Mk〉E1

(4.7)

is computed by averaging Mk and M2
k over the ensemble (4.6), i.e. σ(Mk)

2
E1

= 〈M2
k 〉E1

−
〈Mk〉2E1

. The inequalities between the fi make these averages cumbersome. Thus, we define

a slightly different ensemble

E2 = {fi | 0 ≤ f1 ≤ f2 ≤ f3 · · · ≤ fN ≤ Nc + N} (4.8)

in which the integers are allowed to be equal. Averages in this ensemble will turn out to

be easier to compute. First we demonstrate the bound

σ(Mk)E1

〈Mk〉E1

<
σ(Mk)E2

〈Mk〉E2

. (4.9)

To show this bound consider the auxiliary integral

I = N(N + Nc)
k

∫ 1

0
xk dx . (4.10)

Sums of the form
∑

i f
k
i with fi drawn from either E1 or E2 can be considered as discrete

approximations to this integral. In the N → ∞ limit, an average over either E1 or E2

will converge to (4.10) via the results in the standard Monte Carlo theory of computing

integrals (see section 3 of [9]). Thus, as N → ∞ the mean of Mk taken in either ensemble

will be the same. Now observe that every set of fi that appears in the ensemble (4.6)

also appears in (4.8). However, (4.8) contains additional sets of integers in which some fi

coincide. But sets of coinciding fi provide poorer approximations to the integral (4.10).

Thus the variance of Mk computing in the second ensemble (4.8) must be larger. This

shows the bound (4.9).

In the large N continuum limit, expectation values in the ensemble (4.8) can be com-

puted by turning the sums over integers into integrals.1 We should find that 〈1〉E2
= 1 and

to this end we compute the normalization constant

C =

Nc+N
∑

rN=0

rN
∑

rN−1=0

· · ·
r2

∑

r1=0

1 ≈
∫ Nc+N

0
drN

∫ rN

0
drN−1 . . .

∫ r2

0
dr1 =

(Nc + N)N

N !
. (4.11)

When f(r1, . . . , rN ) is symmetric in its arguments, we have the useful identity

∫ Nc+N

0
drN

∫ rN

0
drN−1 . . .

∫ r2

0
dr1f =

1

N !

∫ Nc+N

0
drN

∫ Nc+N

0
drN−1 . . .

∫ Nc+N

0
dr1f.

(4.12)

1The reader may wonder why the same continuum approximation does not apply to the ensemble (4.6),

obviating the need for the bound (4.9). When Nc À N , averages in (4.6) can indeed be approximated in

this way. However, when Nc is O(N) the continuum limit is more subtle and (4.9) is necessary.
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Using this we can compute the mean

〈Mk〉E2
=

1

C

∫ Nc+N

0
drN

∫ rN

0
drN−1 . . .

∫ r2

0
dr1Mk =

N(Nc + N)k

k + 1
(4.13)

It is straightforward to compute 〈M2
k 〉E2

similarly, and this gives the standard deviation to

mean ratio as
σ(Mk)E2

〈Mk〉E2

=
k

√

N(2k + 1)
. (4.14)

This vanishes for small k, and is of order one when k ∼ N . Using the bound (4.9) we can

conclude that in the semiclassical N → ∞ limit, almost all half BPS states have essentially

identical low moments. Therefore the corresponding classical solutions have essentially

identical low order multipoles, and the differences will not be observable by a semiclassical

observer.

5. Discussion

We showed that the multipole expansion of half BPS asymptotically AdS5×S5 spacetimes

encodes the tower of commuting, conserved charges that completely identifies the under-

lying quantum eigenstate. We then argued that a semiclassical observer, having access to

coarse-grained observables, would only be able to measure the low multipoles, and that

these were essentially universal for almost all half-BPS states. Thus the semiclassical ob-

server necessarily loses information. The basis of the latter argument was that features

of spacetime that occur at the Planck scale are only accessible in quantum gravity, and

not to classical observers. This raises a question as to why the multipole expansion of the

spacetime metric that we studied is itself reliable at high orders. In fact, strictly speaking,

it is not classically reliable at very high orders — in quantum gravity there is a wavefunc-

tion over metrics that will lead to significant fluctuations in the precise form of the highly

suppressed higher order multipoles. However, because we are constructing spacetimes dual

to exact eigenstates of the moment operators, upon quantization the eigenvalues should

still be extractable from the wavefunction of spacetime.
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A. Asymptotic form of the 10D metric

Having computed the asymptotic expansion of the function u as in section 3.1, one can find

the multipole expansion of every component of the metric. The complete metric is given

in (2.14), (2.15), (2.16), (2.17). A multipole expansion for Vi (2.16) can be calculated as

was done for u in section 3.1. The answer is

V1(r, ϕ, θ) = −2 sin ϕ sin θ

(

~N

ρ3
+

∞
∑

l=1

~
l+1

∑

f∈F Al(f)

ρ2l+3
(−1)l(l + 1) · (A.1)

·
[

2F1(−l, l + 2, 1; sin2 θ) + l 2F1(1 − l, l + 2, 2; sin2 θ)
]

)

.

The second component is given by V2 = − cot ϕV1. With these tools it is now possible to

compute the components of the metric to any order. The first terms of Vi are

V1 = −2 sin ϕ sin θ

ρ3

(

~N − 2~
2(2 − 3 sin2 θ)(2E + N)

ρ2

+
6~

3(3 − 12 sin2 θ + 10 sin4 θ)(2M2 + 2E + N)

ρ4
+ O(

1

ρ6
)

)

, (A.2)

V2 = − cot ϕV1 (A.3)

The first terms in the scalar functions in the metric are

R2 =
ρ2

√
2~N

(

1 + ~
(2 E

N + 1)(1 − 3 sin2 θ) − cos2 θN

ρ2
+ O(

1

ρ4
)

)

,

R̃2 =
√

2~N cos2 θ

(

1 − ~
(2 E

N + 1)(1 − 3 sin2 θ) − cos2 θN

ρ2
+ O(

1

ρ4
)

)

,

h−2 = R2 + R̃2 =
ρ2

√
2~N

(

1 + ~
cos2 θ + (2 E

N + 1)(1 − 3 sin2 θ)

ρ2
+ O(

1

ρ4
)

)

,

h2 =

√
2~N

ρ2

(

1 − ~
cos2 θ + (2 E

N + 1)(1 − 3 sin2 θ)

ρ2
+ O(

1

ρ4
)

)

.

These quantities are more directly observable than the function u, but due to their cumber-

some nature it is easier to work with u. Taking the semiclassical limit as in section 3.2, we

again see that at each order of the expansion a new moment Mi appears, as was expected

from the behavior of u.
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